

Some Initial Thoughts on 3.5 GHz...

- New opportunity for truly dynamic large scale spectrum sharing
 - A large amount of spectrum potentially available...
 - 100 -150 MHz of quasi-licensed spectrum
 - Potential for orderly sharing of spectrum among large number of services ...
 - Potential to segment the spectrum into multiple general operating classes...
 - New paradigm in spectrum management...
 - High level framework (e.g., non-interference, priority access, etc.) drives spectrum usage
 - Readily allows new services to be quickly added to the band...
 - Near real-time database technology exists and can support operation...
 - Can facilitate orderly co-existence among multiple / mixed services
 - Database update rates on the order of minutes possible...
 - Improves spectrum utilization / efficiency
 - Database security and privacy are key issues (protecting user information)
 - Priority Access tier is key to success…
 - This tier differentiates usage from traditional secondary access (e.g., unlicensed TVWS)
 - Having well defined priority levels increases predictability of use
 - Enforcement of priority access significantly improves value of the spectrum

Some Potential Applications...

- A wide range of applications are possible...
 - Enterprise/Commercial class WLAN/small cell coverage
 - Relatively low power usage over well defined areas (indoor/outdoor)
 - Some guarantees of QOS are helpful for these applications
 - High reliability hospital WLAN/small cell coverage
 - High priority spectrum use (typically indoors and low power)
 - Otherwise, similarities to the Enterprise/Commercial class above (within very limited areas)
 - High reliability higher powered incident area networks
 - Very geographically-limited and time-limited uses (e.g., at large incident scenes)
 - Short-term deployments (e.g., a few hours) over relatively small coverage areas (e.g., hundreds of meters) at temporary-fixed sites
 - Requires high priority access through the SAS Database
 - High powered wider area networks
 - Critical Infrastructure uses (e.g., Smartgrid), WISP usage, etc.
 - Low power consumer class WLANs
 - Fit best into General Authorized Access tier

Other 3.5 GHz Considerations...

- May be advantageous to segment band to cover subsets of similar uses...
 - Roughly group uses according to power levels, priority levels, etc.
 - Ensures that groups of users have spectrum access in at least portion of band
 - May be helpful in managing interference issues
- Detailed modeling of uses possible in SAS Databases...
 - Realistic modeling of incumbent exclusion zones is needed...
 - Deployment specific to protect incumbents from interference of varying users
 - Can take into account varying transmitter deployments
 - Variable transmit power levels, OOBE levels, interference tolerances, antenna patterns/heights, location accuracy, indoor/outdoor usage, etc.
 - Can provide generalized data about operating environment
 - FCC TAC Interference Limits approach possible to allow users to make informed decisions about the interference environment
- Spectrum sharing testbeds are important...
 - Prove out key concepts in realistic operating environments...